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* / Deals Among Rational Agents

-. Abstract
-2A formal framework is presented that models communication and promises in multi-

agent interactions. This framework generalizes previous work on cooperation without
communication, and shows the ability of communication to resolve conflicts among agents
having disparate goals. Using a deal-making mechanism, agents are able to coordinate and
cooperate more easily than in the communication-free model. In addition, there are certain
types of interactions where communication makes possible mutually beneficial activity that
is otherwise impossible to coordinate.(jt#/ .- k6A)4

§1I'tr od ctx n S-

1.1 Artificial Intelligence and the Multi-Agent Paradigm

Research in artificial intelligence has focused for many years on the problem of a single

intelligent agent. This agent, usually operating in a relatively static domain, was designed

to plan, navigate, or solve problems under certain simpifying assumptions, most notable

of which was the absence of other intelligent entities.

The presence of multiple agents, hovlever, is an unavoidable condition of the real

world. People must plan actions taking into account the potential actions of others, which

might be a help or a hindrance to their own activities. In order to reason about others'

actions, a person must be able to model their beliefs and desires.

The artificial intelligence community has only lately come to address the problems

* inherent in multi-agent activity. A community of researchers, working on distributed

artificial intelligence (DAI), has arisen. Even as they have begun their work, however,

these researchers have added on a new set of simplifying assumptions that severely restrict

* the applicability of their results.

1.2 Benevolent Agents

Virtually all researchers in DAI have assumed that the intelligent agents in their

* domain have identical or non-conflicting goals. Work has thus proceeded on the question

of how these agents can best help one another in carrying out their common tasks [3, 4,

6, 7, 241, or how they can avoid interference while using common resources [10, 11). The



rationale for studying multiple agent interaction stems from a desire for increased system

efficiency or increased capabilities. For example, it is hoped that if a group of agents carry

* out a task cooperatively, the task will take less time than if it were performed by a single

agent.

Of course, when there is no conflict, there is no need to study the wide range of

interactions that can occur among intelligent agents. All agents are fundamentally assumed

* to be helping one another, and will trade data and hypotheses as well as carry out tasks

* that are requested of them. We call this aspect of the paradigm the benevolent agent

assumptioni.

* 1.3 Interactions of a More General Nature

In the real world, agents are not necessarily benevolent in their dealings with one

another. Each agent has its own set of desires and goals, and will not necessarily help

another agent with information or with actions. Of course, while conflict among agents

exists, it is not total. There is often potential for compromise and mutually beneficial

activity. Previous work in distributed artificial intelligence, bound as it has been to the

benevolent agent assumption, has generally been incapable of handling these types of

interactions.

Intelligent agents capable of interacting even when their goals are not identical would

have many uses. For example, autonomous land vehicles (ALV's), operating in a combat

environment, can be expected to encounter both friend and foe. In the latter case there

* need not be total conflict, anid in the former there need not be an identity of interests. One

* can imagine ALV's fronm two dlifferent battalions, or fronti two NATO allies, meeting and

having different goals (though of course a certain amonnt of cooperation would be called

for). Even encounters with the enemy may have thc potential for mutually beneficial

compromise (for example, each may find it advantageous to temporarilty avoid combat).

Other domains in which general interactions are prevalent are resource allocation and

management tasks. An automated secretary [121, for example, may be required to coordi-
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" nate a schedule with another automated (or human) secretary, while properly representing

the desires of its owner. The full capability to negotiate, to compromise and promise,

would be highly desirable in these types of encounters.

". Finally, even in situations where all agents in theory have a single goal, the complexity

of interaction might be better handled by a framework that recognizes and resolves sub-

,* goal conflict in a general manner. For example, robots involved in the construction of a

" space station are fundamentally motivated by the same goal; in the course of construction,

however, there may be many minor conflicts caused by occurrences that cannot fully be

predicted (e.g., fuel running low, drifting of objects in space). The building agents, each

*" with a different task, could then negotiate with one another and resolve conflict.

1.4 Game Theory's Model and Extensions

In modeling the interaction of agents with potentially diverse goals, we borrow the

simple construct of game theory, the payoff matrix. Consider, for example, the following

matrix:

A B
A 3/1 2
B 2/5 0/1

The first player is assumed to choose one of the two rows, while the second simulta-

neously picks one of the two columns. The row/column outcome determines the payoff to

each; for example, if the first player picks row B and the second player picks column A,

" the first player receives a payoff of 2 while the second receives a payoff of 5. If the choice

,.* results in an identical payoff for both players, a single number appears in the square (e.g.,

the A/B payoff above is 2 for both players). Payoffs designate utility to the players of a

- particular joint move [18].

Game theory addresses the issues of what moves a rational agent will make, given

that other agents are also rational. We wish to remove the a priori assumption that

*: other agents will necessarily be rational, while at the same time formalizing the concept of

3



rationality in various ways (and with greater precision than is generally done in the game

theory literature).

Our model in this paper allows communication among the agents in the interaction,

and allows them to make binding promises to one another. We will consider a variety of

assumptions about the rationality of the agents, as to how they decide on both moves and

promises to make. The formalism handles the case of agents with disparate goals as well

as the case of agents with identical goals.

§2. Notation

We expand on the notation developed in [8]. For each game there is a set P of players

and, for each player i E P, a set Mi of possible moves for i. For S C P, we denote P - S

"*. by S, and write i instead of {i} (so i = P - {i}). We write Ms for 'liEs Mi.

We denote by ms an element of Ms; this is a joint move for the players in S. To

ms E Ms and mg E MS correspond an element Mi of Mp. The payoff function for a game

. is a function

P- P x Mp R

whose value at (i, rih) is the payoff for player i if move f is made.

Each agent is able to specify a set of joint moves (i.e., elements of Mp) that specify

outcomes the agent is willing to accept; this set is called an offer group. If any move

or moves offered by one agent are likewise offered by all other agents, this set of moves

constitutes the deal (i.e., the deal is the intersection of all the agents' offer groups). In

practice, a single element of the deal set will be selected by a fair arbiter, and the result

of the selection communicated to all agents. At that point, the agents are all compelled

* to carry out their part of the move. Of course, if the deal set has only one member, no

arbiter is needed.

We now define a secondary payoff function pay(i, m,, D,), the set of possible payoffs

4
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, to i of making move mi and suggesting offer group P:

jp(i, E P, A 30,[O E allawed.(i, P) A d E Ol), if such ad
pay(i,Mi P0= exists;

{p(i, rA) ml E allowed,,(i, mi)), otherwise.

Sallowed, n(i, mi) is the set of moves that other agents might potentially make while i makes

* move mi, and allowed.(i, D,) is the set of deals that other agents might make while i

suggests offer group Di. Our formalism implicitly separates offer groups from moves (i.e.,

*there will be no effect on moves by offer groups or vice versa). Intuitively, this reflects

simultaneously revealing one's move and offer group, with one's eventual action determined

by others' offer groups (that is, only if there is no agreement will you have to carry out

your move). Future work might investigate the situation where offers are made before

moves are chosen, and may thus affect them.

For nonempty sets {ac) and {0), we write {aj} < {13,} if a, < fli for all i,j (and

". say that {0} strictly dominates (aj)). Likewise, we write {a,} < {/3} for nonempty sets

(a.) and {j } if ai : f, for all i, j and the inequality is strict in at least one case. We

then say that {/} dominates {aj,}.

Finally, we define p(S, ds) as {p(i,d) : i E S A dg E M8 }. These are the possible

payoffs to a group S of players of making move ds.

2.1 Rational Moves

We will denote by R, (pi) the set of rational moves for agent i in game p. We use

" the following definition to constrain what moves are elements of Rm(p,i) (i.e., what moves

- are rational):

"pay (i,di,,0) < pay (i, cj, 0) => di V R,.(p, i). )

In other words, if, when no binding agreement will be reached, every possible payoff to

i of making move di is less than every possible payoff to i of making move ci, then di is

irrational for i. Of course, this does not imply that c, is rational, since better moves may

" still be av.ailable.

'. 5

...................... o .. . . . . . . . . . .



In general, it will not be possible to fully specify the value of pay(i, mi, 0) for all mi,

since there is not full information as to the moves that the other agents will make. Instead,

we use (1) to show that some moves are not rational.

, 2.2 Rational Offer Groups

We define a rational offer group in a way analogous to how we defined a rational move

above. We denote by Ro(p,i) the set of rational offer groups for agent i in game p, and

characterize a rational offer group by the following constraint on Re(p, i)'s members:

3mi[pay(i, mi,P,) < pay(i,m,,O,)j] A P, Ro(p,i). (2)

In other words, if for some move mi every possible payoff resulting from offer group Pi is

less than every possible payoff resulting from offer group 0,, then Pi is not a rational offer

group.

There is one additional constraint on members of Re(p, i): rational offer groups specify

(through the function p) a continuous range of payoffs that are acceptable to an agent.

Intuitively, a rational offer group must reflect the notion of "monotonic satisfaction" -if a

rational agent is satisfied with a particular payoff, he will be satisfied with one of equal or

* greater value (this is a fundamental meaning of "utility"). Formally, we write

pYi F):5PY,8) A F GOi= E O (3)

for all Oi - R,,(p, i) and moves F and iF. For a particular game and player, a rational offer

. group can thus be unambiguously specified by any of its members with the lowest payoff.

In general, there may be more than one rational offer group for an agent in a game.

If full information were available to an agent about the offers others were going to make

(along with their "backup moves"), it would be trivial to determine R,,(p,i). In practice

such information is not available, but a rational agent i may be able to discover some

rational offer group, i.e., some offer group provably in R(p,i).

2.3 Rational Moves and Offer Groups for a Set of Players

We also wish to define the rational moves and the rational offer groups available to a

set of players. For S C P, we denote by R,,,(p,S) the rational moves for the group S in

6
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the game p. It follows that the members of Rm(p, S) are elements of Ms. We assume that

Rv(p, S) C Rm(p, S') x Ms-s, for S' C S.

This states that no rational move for a set can require irrationality on the part of a subset.

An obvious consequence of this assumption is that

R (p,S) C H1R.(p,i).
iEs

A move that is rational for a group of players is thus rational for each player in the group.

Similarly, we denote by Ro(p, S) the set of rational deals for S in the game p (that

is, the members of Ro(p, S) are sets of elements from Mp). It is the "crossproduct-

intersection" of rational offer groups for the individual agents:

Ro(p,S) = (o: o = oi A OER,(pj
jES

2.4 Rationality Assumptions

The value of pay(i,mi, D,) will depend, of course, on the values of allowedm(i, mi)

and allowed0(i, D,) (i.e., the moves and the deals that other agents can niake). In order

to constrain the value of pay, we now define cach of the allowed functions (allowed,,, is"

defined as in (8]).

1. Minimal move rationality: allowedm(i, m,) = Mi. Each player assumes that the

others may be moving randomly.

2. Separate move rationality: allowed,, (i, ,) c R ,, (p, F). Each player assumes that

the others are moving rationally.

3. Unique move rationality: For all m and m', allowed,,(i, mn) = allowedm(i,m )

and Iallowedv(i,m,)I = 1. Each player assumes that the others' moves are fixed in

advance. This may be combined with separate rationality.

The assumptions above do not fully specify what is or is not a rational move. Rather,

they help constrain the set of rational moves by allowing us to prove that certain moves

7



- are not rational. We now define analogous assumptions regarding deals other agents might

be making:

1. Minimal deal rationality: allowed.(i, D.?) c P(Mp), where P(Mp) denotes the

power set of Mp. Each player assumes that the others may be making random deals.

* 2. Separate deal rationality: allow ed.(i, D,) C R.,(p, F). Each player assumes that

the others are making rational deals.

3. Unique deal rationality: allouwed,0 (i, D,) = all owed ,(#, Ei) and Iallowedo,(i, D,)I

1 for all D, and E,. Each player assumes that the others' offers are fixed in advance.

This may be combined with separate deal rationality.

We will refer to the combination of separate and unique move rationality as indi-

* vidual move rationality, and to the combination of separate and unique deal rati-mality

- as individual deal rationality. As in [8], any move that can be proven irrational under

the assumption of minimal move rationality will be similarly irrational under the other

move rationality assumptions. Analogously, any offer group that can be proven irrational

under the assumption of minimal deal rationality will be irrational under t~he other deal

- rationality assumptions.

* §3. Rational Deal Characteristics

With our notational conventions defined, we now prove several characteristics of

R,,(p,i). We will henceforth use W to denote any move that gives agent i his highest

- Payoff.

Theorem 1 (Existence of a non-null rational offer group). JR.(p,i)f > 1.

Proof. ir R0 (p ,i) wcrc emp~ty then i would do best by miaking no oilers and rclying on his

move to generate his payoff. Bit pa~,mi * will be greater than or equal to pay(i, mi,0)

* for all mi (since i will either be matched by other agents, increasing i's payoff, or will not

be matched, and will therefore be harmless since it doesn't affect other's moves). Thus

the offer group {i}) would also be in R0 (p,i), guaranteeing it to have at least one non-null

*member. a

[8
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It follows directly from the definition of a rational offer group (3) that all non-empty

members of i's set of rational offer groups include 8F. Together with Theorem 1, this implies

that it is always rational for an agent to include in his offer group the move that gives him

his highest payoff.

In addition, an agent can often restrict his offers to those whose payoffs are higher

than that which he can get by making the null offer, relying on his move to give him this

", payoff.

Theorem 2 (Lower bound). Assuming unique deal rationality, if for any move mi and

joint move d # 8.

p(i, 5) _ pay (i, m,, 0),

3o ,[OE R(p,i) A d o,].

Proof. There are two cases:

1. p(i, d) < pay(i,mi, 0): The only way for d to be in some rational offer group P is

for the c deal not to be accepted (otherwise pay(i, m,, P,) would be dominated by

the offer group pay(i, mi,O) where O, = {6 : p(i,F) > p(i, d))). But if d is not

accepted, then it is equivalent to another offer group that includes only those moves

with payoffs higher than d. This smaller offer group will then also be in R0 (p, i).

2. p(i,cd) = pay(i, mi, 0): Assume that d is in some rational offer group Pi. If ci is not

accepted, or is accepted along with other offers, then pay(i, in,, Oi) > pay(i, mi, Pi)

where O, (6 p(i, F) > p(i, W)), so there is another rational offer group (namely 0,)

without d. If di is the only accepted offer, then pay(i, mi, i) = pay(i, m,, Pi) (where

i. is the move that gives i his highest payoff), since i' will not be accepted anyway

and th erefore pay(i, m,, W) pay (i, m,, 0). Again, thcre is a rational offer group that

does not include d. a

Note that Theorem 2 will not hold for i (i.e., the joint move that gives i his highest

payoff) since that would contradict Theorem 1 (Theorem 2's proof makes implicit use of

the fact that d 8 - in its construction of the doiinating offer group 0). Note also that

9
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Theorem 2 will not hold under minimal deal rationality. Imagine that a perverse opponent

chooses his offer group as follows:

1. If you include in your offer group deals with low payoff (for you), he will accept the

deal with your best payoff;

2. If you don't offer that low deal he will accept no deals and you will have to rely on

your move to get a payoff.

* Under these circumstances (fully consistent with minimal deal rationality), it might be to

your advantage to offer a low-payoff deal, since that might be the only way to get your

* maximal payoff.

*3.1 Restricted Case Analysis

The consequences of Theorem 2 will differ, of course, based on assumptions about

allowed, since these will affect pay(i,mi, 0) for any given i. Consider the following

payoff matrix:

A B
A 1/4 0/5
B 3/2 2/7

It is shown in [81 that, assuming minimal move rationality (potentially random or even

malevolent moves by other agents), the row agent can still use "restricted case analysis"

to constrain his move to B. If unique deal rationality can be assumed then the offer group

consisting solely of move B/A (i.e., bottom left corner) is guaranteed by Theorems I and

2 to be a rational offer group. Of course, there may be other rational offer groups, for

example thc offer (B/B, B/A}, depending on what deals the other player can offer.

We formalize part of thc above discussion:

* Corollary 3 (Restricted case analysis). Assuiung minimal move rationality and

unique deal rationality, if for some ci and d,, for all ci and di,

pki, d) < 'i

10



*. then there exists an O E Ro(p,i) such that no d is in 0,.

Proof. Follows from Lemma 3 in [8] and Theorem 2. 0

3.2 Case Analysis and Iterated Case Analysis

Restrictions on rational offer groups analogous to Corollary 3 apply for case analysis

and iterated case analysis under the assumptions of unique and individual move rationality,

respectively. The case analysis situation is represented in the following payoff matrix, seen

from the row player's perspective:

A 4A 4/1 2
B 3/5 0/1

The row player need only assume that the other player's move will not be affected

by his own move (i.e., unique move rationality) to realize that making move A is in all

circumstances superior to making move B. As long as unique deal rationality can also be

assumed, there is a guaranteed rational offer group consisting only of move A/A.

*i Corollary 4 (Case analysis). Assuming unique move rationality and unique deal ratio-

nality, if for some ci and di, for all cT and d with cf = dr,

p(i,,i < p(i,')

then there exists an Oi E Ro,(p,i) such that no d is in Oi.

Proof. Follows from Lemma 4 in [8] and Theorem 2. o

Siniflarly, if the column player can assumne that the row player is rational and making

moves independent of the column player's moves (i.e., individual move rationality), then

he can prove that move B is optimal in the above matrix (since the row player will play

A). With unique deal rationality, he has a guaranteed rational offer group of A/B.

The effect of Theorems 1 and 2 is to show us that there is always a rational offer

group that includes an agent's highest payoff outcome, and includes no outcomes below or

I1



*- equal to what he could achieve without deals. Below, we consider other constraints on an

agent's rational offer groups.

*§4. The Group Rationality Theorem

The work in [81 and (9] was concerned with the formalization of cooperative behav-

ior, given certain constraints about the agents participating in an interaction. Using our

notation, a desirable general result would have been

pa (P, d,o0) < pa P F )=*d R ,,,(p, P), (4)

that is, if any joint move for all players is dominated by any other, then the dominated

-. joint move is not rational for them. This result could not be proven, and the inability to

do so stemmed directly from the lack of communication inherent in the model. Without

at least minimal communication (e.g., self-identification), there is no way to coordinate on

a universally perceived best move when several such moves exist.

We are now able to derive an important result about Ro(p, P) very similar to the

elusive non-communication result in (4).

Theorem 5 (Group offers). Assuming individual deal rationality,

p(P,d) < p(P, C) => 30,0, E R.,(p,i) A d O

for all i E P.

Proof. There are two possible cases:

1. VOj[Oj e R(pi) = d 0 O]: Since d will not be a consummated deal, if Pi is any

offer group containing dtlhen payi,mi,Oi) pay(i,m,,P,) where Oi = (6':p(i,c') >

p(i, d)). Along with Theorem 1, this shows the existence of a non-null rational offer

group without d.

2. 30i[Oj E Ro(p,i) A d E O,]: All other agents are rational (by assumption), and any

rational offer group that includes d also includes F (3); thus, if P, is any offer group

containing d, then pay(i,m,,O,) > pay (i,m,,P,) where O = {: p(i, F) > p(i,d)).

12



This, along with Theorem 1, shows the existence of a rational offer group without d.

a

Because of Theorem 5, a rational agent interacting with other rational agents knows

' that he need not offer a move that is dominated for all players-doing so cannot increase

his payoff. If the other rational agents also know that all agents are rational, they too

will realize that they can refrain from offering a move that is dominated for all players.

- Higher levels of knowledge 113], such as their knowing that all agents know that all agents

are rational, are not needed. In addition, because of the definition of rational offer groups

(3), the agents can refrain from offering any moves with smaller payoffs, since those groups

would necessarily include the dominated move.

§5. Examples

We will now examine the consequences of our rational offer theorems in several addi-

- tional types of games.

5.1 Best; Plan

The best plan scenario is reflected in the following matrix:

A BiA 7 4

'. B 5 6 _

All agents recognize that there is a single best move; how will their offer groups reflect

this? From Theorem 1, a rational agent knows that he can safely offer the move that gives

him his best payoff (i.e., move A/A), even assuming minimal deal rationality on the part

*- of other players (though the theorem is noncommittal as to whether other moves can or

should be included with it). All players can also rule out move A/B using Theorem 2 if

unique deal rationality holds (since A/B yields the lowest payoff). If there is an assumption

' of individual deal rationality, Theorem 5 can guarantee each agent that the offer group

consisting solely of A/A is rational. Communication thus allows coordination on the best

*. plan under more intuitive assumptions about the interaction than those used in 18].

13



* 5.2 Breaking Symmetrie-Multiple Best Plan

Our rational offer group theorems allow us to solve the "Multiple Best Plans" case

that could not be solved in [81. The following matrix illustrates the scenario:

A B

* Assuming minimal deal rationality, an agent can rationally offer B/A and A/B. In addi-

tion, assuming unique deal rationality an agent knows that he can rationally not offer A/A

and B/B (since they are lowest yield moves). This analysis can be done by both agents

- if they are rational and operating under the unique deal assumption. Their offer sets will

* overlap on the multiple best outcomes; selection of a single alternative from the multiple

agreements then occurs.

* 5.3 Prisoner's Dilemma

The prisoner's dilemma is represented by the following matrix:

0 D

Each agent most desires to play D while the opponent plays C, then to play C along with

the opponent, then to p~lay D along with the opponent, and least of all to play C while

* the opponent plays D. The dilemma comes about because case analysis implies that it is

always better to play D; both players choosing D, however, is less desirable for both than

* if they had chosen C. The dilemma has received much attention within the philosophy and

* game theory literature [2, 5, 22, 26]. In the usual presentation of the prisoner's dilemma,

* playing C is called "cooperating," and playing D is called "defecting." With the presence

* of communication, in fact, there is no dilemma:

* Corollary 6 (Prisoner's Dilemma). It all players know that all players are operating

under the assumption of individual deal rationality, agents will cooperate in the prisoner's

dilemma.

14



Proof. The first player knows that it is rational to offer DIC (since it is rational even

under minimal rationality, Theorem 1); he also knows it is irrational to offer CID (from

Theorem 2, since individual deal rationality includes unique deal rationality). By Theo-

rem 5, there is a rational offer group without D/D. Now he knows that the other agent

will not offer DIC (since the other agent is assumed rational and operating under the

assumption of unique deal rationality, Theorem 2). Since DIC will certainly not be met,

pay(i,D, {D/C}) _ pay(i,D, {D/C,C/G}). Thus, the offer group {D/C,C/C) is ratio-

nal. The second agent will, if rational and working under the same assumptions, come to

the same conclusion. The deal C/C will be struck, and the agents avoid the DID trap.

§6. Extending the Model

For certain types of interactions, the model presented above (i.e., the various assump-

tions and theorems about rational moves and deals) does not specify rational activity in

sufficient detail. We can extend the model in a variety of ways to handle these cases, and at

the same time capture a wider range of assumptions about the interaction. In this section,

we briefly present some of the extensions that might be made to our original model.

6.1 Similar bargainers

Consider the following payoff matrix (equivalent to game 77 in Lapoport and Guyer's

* taxonomy [23J)
A

A 3 25/0 0/5

Assuming separate deal rationality, the first player can assume that B/A should be

in a rational offer group of his, and that B/B should not be. What else can be said about

what constitutes a rational offer group in this game? There are three choices, namely

{B/A}, {A/A,B/A), and (A/B,A/A,B/A). In order to decide aniong the choices, we

would like to make more assumptions about the "bargaining tendencies" of the other agent

15
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* 6.2 Stochastic Model-The Game of Chicken

Note, however, the following payoff matrix (commonly known as the game of chicken

* [23]):

AB

Two agents, even if they assume individual deal rationality and the similar bargainers

assumption, will be faced with the following choices: a payoff of (3) or a payoff of (2,3, 5}.

According to our definitions, neither of these sets dominates the other, and it is not clear

how to decide between them.

If, however, we extend the model to include a probabilistic choice from within the

agreement set, it is clear that the latter agreement set dominates the former (with an

* expected value of 3.33 versus 3). This would correspond to the fair arbiter mentioned

earlier tossing an n-sided coin to decide among the n members of an agreement set. The

usual understanding of "utility" also supports viewing the payoffs in this way.

A further stochastic extension to our model would allow moves themselves to be

specified probabilistically (e.g., A with probability .5, and B with probability .5). In the

game theory literature, this is the distinction between pure strategics and mixed strategies

* [18]. An analysis of this model is beyond the scope of the present discussion.

6.3 Conjunctive Offers-Battle of the Sexes

In the game of chicken example presented above, there was an added complexity that

was temporarily ignored: the possibility of "defection." If one agent reasons that the other

agent will accept all payoffs above 2, it to the first agent's benefit to only offer moves of

payoff 5 (this is anialogous to the prisoner's dilcinia, with the samne potential that both

* players will use identical reasoning and no agreement will be reached). A similar problem

can be seen in the so-called battle of the sexes matrix, seen below.

A B

17



(since, in fact, some agents might be tougher deal-makers than others). We will ignore

what value the agents might place on making a particular move in the absence of a deal,

since the payoff is underdetermined.

Let us define two offer groups Oi and Oj to be similar if and only if they both have

the same lower boundary for what deals are included or not included. similar(0,0,) is

true if and only if

n[p(d) > n d EO, A p(j, F) > no*E

for some number n.

It might seem that, since both players' payoffs are designated in numbers, it is rea-

sonable to compare their utilities (e.g., player A values a payoff of 4 more than player

B values a payoff of 3). In fact, this should not be taken for granted, and utility theory

does not ordinarily allow such a comparison to be made. Nevertheless, if we use the sim-

ilar bargainers definition, we implicitly assume some meaningful measure for comparing

inter-personal utility.

One assumption to use in deciding upon rational offer groups is now that the other

agent will accept deals that you would accept; that is, Oj E Ro(p, j) *4 Oi E Ro(p, i) where

similar(0,, o).

Under this assumption, we can decide what deal is rational in the above game. Player

*1 reasons that if he offers (B/A), player 2 (who is a similar bargainer) will offer only

• (B/B). There will be no match. In the same way, if it would be rational for player

I to offer (A/A,B/A) then player 2 will offer (A/A, B/l), with an agreement on A/A

and a payoff of (3) for both. If player 1 offers (AID, A/A, BI/A) then player 2 will offer

. (A/B, A/A, B/B) and there will be agreement on A/A and on A/B, with a payoff of (2,3)

for both. Since (3) dominates (2,3), agents who assume common knowledge [13] of the

similar bargainer assumption should choose the rational offer group that yields agreement

on A/A.

16



One approach to solving this problem is to allow "composite" offers, for example, an

offer consisting of a conjunct of several moves (the conjunct must be matched exactly in

order for a deal to occur). Thus, the offer consisting of A/B A B/A can consistently be

made by both agents without the potential of defection (and with an expected utility of

1.5 for each). This notion can be extended to general logical offers consisting of disjuncts,

conjuncts and negations of joint moves. The battle of the sexes can thus be uniquely solved

with the assumption of sinilarity in bargaining, if conjunctive offers are allowed.

6.4 Repeated Interactions

The technique of allowing conjunctive offers, presented above, in fact transforms the

original game into a new supergame that can then be approached using our previous

analysis. A similar technique can be used when agents will be participating in a fixed

number of interactions, each with known payoff characteristics.

Imagine that there are n games, P1,P2,... ,pn. To each game j corresponds, for player

i, a set of moves M. We now construct a new game whose moves for each player are the

crossproduct of his moves in the individual games:

and whose outcomes are likewise crossproducts of the individual games' outcomes. Of

course, the player's utility from any of these supergamne outcomes is some function of his

utilities from its constituent outcomes; summing the utilities seems reasonable, although

utility theory does not actually sanction such an approach.

*" 6.5 Specifying Partial Outcomes

We would like to generalize the analysis of deal-inaking a rd promises to the case where

agents need not specify complete outcomes (i.e., a joint move for al players) in their offer

group. In this section we will briefly note some consequences of generalizing the types of

offers that can be made.

Let us say that each agent is able to specify an offer group of partial moves that

specify outcomes the agent is willing to accept. If a move which is offered by one agent

') 18
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* is likewise accepted by all other agents in the relevant set, those agents are all required

to carry out the move. Multiple agreements again result in a set of moves; in practice (as

above), a single element of this set would be selected by a fair arbiter. A partial move s

for agent i is therefore a vector that specifies a move for some set S of agents. i must be

an element of S, but may be its only element. Formally, if A' is a partial move,

r" C Mi X M 8 , = Ms.

The payoff vector p is defined over partial moves as

PYi, r') ={(Y, F) F= r's x

We propose a new restriction on offer groups in the current model that did not exist

* previously: there can be no "contradictions" among an agent's offers. That is, we must

assume tb ~t there are no two partial moves that are specified in the offer group such that,

if both were accepted, the agent could only satisfy one. This problem did not arise above

because all agents were bound by every offer. Thus, it was impossible that two different

agents could be promised contradictory moves by an agent without themselves taking part

in accepting all of those moves. Once the assumption is made that an agent will not

* promise contradictory partial moves, the analysis is similar to that developed above.

A further comiplication, however, arises in specifying the secondary payoff function

paSI(i, mi, D) within this new model; in particular, what istspyofwe a deal has

been reached by a set of agents that does not include him? There are several possible

* alternatives, including i's being forced to make move i, or being allowed to alter his

move based on Cite agreement reached by the others. Analysis of the consequences these

assumptions have on strategies will be a subject of future research, and is outside the scope

of this paper.

There is, however, another method for handling the offer of partial moves that does

allow our analysis to be used directly. We could define tbe offer of a partial move as

* implicitly including its extension in the total move space (i.e., if A~ is offered explicitly,

19
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the implicit offer includes all joint moves in Mp that include A'). Then, of course, our

original analysis is completely appropriate. Further work might also consider the situation

(with total or partial move offers) where deals consist of unions of offers rather than their

intersection.

§7. Previous Work

The subject of interacting rational agents has been addressed within the field of ar-

tificial intelligence as well as in the discipline of game theory. Here we will briefly review

relevant contributions from these two areas, and contrast our present approach with pro-

vious efforts.

7.1 Work In Artificial Intelligence

As mentioned above, researchers in distributed artificial intelligence have begun to

address the issues arising in multi-agent interactions. Lesser and Corkill [4] have performed

empirical studies to determine cooperation strategies with positive characteristics (such as,

for example, what types of data should be shared among distributed processors). They are

solely concerned with groups of agents who share a common goal, but have acknowledged

the benefit even under this assumption of having agents demonstrate 'skepticism" (i.e.,

not being distracted by others' information).

Georgefl 110, 11] has developed a formal model to combine separate plans of indepen-

dent agents. The primary concern is to avoid destructive interference caused by simulta-

neous access to a shared resource. The model used assumes that the agents have separate

goals, but that these goals do not directly loppose one another. Cooperative action is nei-

ther required nor exploited, except insofar as it allows agents to keep out of each other's

way.

Other notable efforts include Smith's work on the contract net [7], Malone's work

extending the contract net model using economic theory 1191, and the theoretical work on

knowledge and belief of Appelt, Moore, Konolige, Ilalpern and Moses [1, 14, 15, 16, 17,
so, 21].

20



The current work extends these previous models of interaction by allowing a fuller

range of goal disagreements among agents. By using a framework that captures total and

- partial goal conflicts, it allows investigation into compromise, promises and cooperative

* .action. None of these could be handled using previous schemes.

This paper considers the communication scenario in ways similar to the manner in

which previous work [8, 9j investigated cooperation among rational agents when no comn-

- munication occurs. Below we briefly note the advantages that were gained when commu-

* nication and promises were added to the interaction model.

The best plan interaction was handled in our framework by assuming individual deal

rationality. Because in the no-communication case this scenario could not be solved using

individual move rationality, other assumptions were introduced: informed rationality in [8)

* and common rationality in [9]. Informed rationality, in our notation, constrained allowed,.

* in a way that assumed each player would respond rationally to the others' moves, whatever

* they might be. For a fixed ins, the restricted game was defined to be

pl.. : Px MS --+ R plm (i, ing) = p(i, MA).

* Intuitively, this was the game where the players in S were assumed to make the move Ms.

* Informed rationality was defined as follows:

Informed rationality: allowed,,,(i, i) = R(pI,,, F). E ach player assumes that all

others will respond rationally to whatever move he makes.

It should be noted in passing that an assumption of common knowledge of rationality

* will also allow for a unique solution to the best plan case, though this has not been

* previously pursue(] in the literature.

To solve the prisoner's dilemma, even more assumptions had to bc introduced. The

* interested reader is referred to [8] and [9] for full details.

Even using a variety of assumptions, previous work could not handle the multiple best

plan case, where there are several outcomes all equally recognised as best by all players.

To break the symmetry, some communication is needed, though this communication can

21
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be as simple as self-identification and reliance on a common rule (e.g., agent with lowest

name performs lowest ordered action). We were able to solve the multiple best plan cae as

easily as the best plan case, as well as handle several novel interactions through extensions

to the model, such as the similar bargainers assumption.

7.2 Game Theory

Game theory has focused on a variety of interactions, and sought to characterize the

types of actions that rational agents will take in each. Many of the same questions that

come up in our work have been addressed by game theoreticians. Their approach, however,

has left a great many important issues unexamined. Consider the following quote from the

classic game theory text, [18]:

Though it is not apparent from some writings, the term "rational" is far from
precise, and it certainly means different things in the different theories that have
been developed. Loosely, it seems to include any assumption one makes about
the players maximizing something, and any about complete knowledge on the
part of the player in a very complex situation... [Games and Decision8, p. 51

As abnother example, consider the following best plan interaction:

A2" A2

Al 4 1/2
B1 3/1 2/3

It was demonstrated above that the best plan case can only be solved under particular

*definitions of rationality. Rapoport and Guyer, however, writing in 123, put forward the

following assumption regarding agents' behavior (citing the similarity with [25]):

(A3). If a game has a single Pareto equilibrium, the players will choose the strategy
which contains it...
Oiar assuiiption (A3 ) says that A IA 2 is the nattiral oiatcome, which, of course,
is dictated by common sense... we shall refer to this as a prominent solution. [A
Taxonomy of 2 x 2 Games]

In short, game theory has been willing to take for granted certain types of behavior

without carefully formalizing its definitions of rationality, nor its asumptions of inter-agent

"" knowledge.

22
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These questions are particularly important in the field of artificial intelligence. We are

* not interested in characterizing game matrices: we want to characterize agent rationality

* and explore the consequences of various assumptions. The goal is to be able to implement

* intelligent agents whose strategies of behavior will be provably rational.

§8. Conclusion

In real world domains, intelligent agents will inevitably need to interact flexibly. Pre-

* vious work has not modeled the full range and complexity of agents' varied goals. The

benevolent agent assumption, which assumes that agents have identical or non-conflicting

goals, has permeated previous approaches to distributed Al.

This paper has presented a framework for interaction that explicitly accounts for

communication and promises, and allows multiple goals among agents. The model provides

- a unified solution to a wide range of problems, including the types of interactions discussed

- in [8] and [9]. Through the use of communication and binding deals, agents are able to

coordinate their actions more effectively, and handle interactions that were previously

* problematical. By extending the communication model even further, a wider variety of

* interactions can be handled.
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